Source code for quantizeml.layers.reshaping.flatten

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2022 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

__all__ = ["QuantizedFlatten"]

import tensorflow as tf
import keras
import functools
import operator

from ..layers_base import (register_quantize_target, tensor_inputs, register_no_output_quantizer,
                           register_aligned_inputs)
from ..recorders import TensorRecorder
from ...tensors import FixedPoint


[docs] @register_quantize_target(keras.layers.Flatten) @register_no_output_quantizer @register_aligned_inputs @keras.saving.register_keras_serializable() class QuantizedFlatten(keras.layers.Flatten): """A Flatten layer that operates on quantized inputs """ @tensor_inputs([FixedPoint]) def call(self, inputs): if not inputs.per_tensor: inputs, shift = inputs.expand(inputs.value_bits) if getattr(self, 'input_shift', None) is None: with tf.init_scope(): self.input_shift = TensorRecorder(name=self.name + "/input_shift") self.input_shift(shift) if tf.executing_eagerly(): flattened_shape = tf.constant([inputs.shape[0], -1]) else: non_batch_dims = inputs.shape[1:] last_dim = int(functools.reduce(operator.mul, non_batch_dims)) flattened_shape = tf.constant([-1, last_dim]) return tf.reshape(inputs, flattened_shape)