Akida 2.0 capabilities
Note
These details are relevant to Akida 2.0 IP-based solutions.
For compatibility with multiple possible hardware backends downstream, CNN2SNN and the Akida simulator impose few constraints on layer dimensions. However, hardware does have limits in this respect, which will be checked at the stage of mapping a model to a specific device (real or virtual). This page details the limits for the Akida 2.0 IP.
Please refer to Akida V2 layers for layers description.
Note
Akida 2.0 supports using a Lookup Table (LUT) for activation functions other than ReLU for InputConv2D, Conv2D, DepthwiseConv2D, Conv2DTranspose and DepthwiseConv2DTranspose layers. However, Max Pooling is not compatible when LUT-based activations are used.
Input dimensions
Width |
Height |
Channels |
>=5 |
[5:384] |
1, 3 |
Convolution parameters
Kernel Size |
Stride |
Type |
3×3 |
1, 2, 3 |
Same, Valid |
4×4 |
1, 2, 3, 4 |
Same, Valid |
5×5 |
1, 2, 3, 4, 5 |
Same, Valid |
7×7 |
1, 2, 3, 4, 5, 6 |
Same, Valid |
Max Pooling size
(size, stride) supported combinations: (2, 2), (3, 2).
Quantization bitwidth
Input |
Weights |
Activation |
8 |
8 |
4, 8 |
Input dimensions
Width |
Height |
Channels |
<=4096 |
<=4096 |
<= 2048 |
Convolution parameters
Kernel Size |
Stride |
Type |
1×1, 3×3, 5×5, 7×7 |
1, 2 |
Same |
Max Pooling parameters
Size |
Stride |
2×2 |
1, 2 |
Global Average Pooling width
[1:64], Width x Height < 144
Quantization bitwidth
Input |
Weights |
Activation |
4, 8 |
4, 8 |
4, 8 |
Input dimensions
Width |
Height |
Channels |
<=4096 |
<=4096 |
<= 2048 |
Convolution parameters
Kernel Size |
Stride |
Type |
3×3, 4×4 |
2 |
Same |
Quantization bitwidth
Input |
Weights |
Activation |
8 |
8 |
8 |
Input dimensions
Width |
Height |
WxHxC |
1 |
1 |
<= 2048 |
Quantization bitwidth
Input |
Weights |
Activation |
4, 8 |
4, 8 |
4, 8 |
Input dimensions
Width |
Height |
Channels |
<=4096 |
<=4096 |
<= 2048 |
Parameters
FIFO size |
Filters |
[2:10] |
<=2048 |
Quantization bitwidth
Input |
Weights |
Activation |
8 |
8 |
8 |