Source code for quantizeml.layers.depthwise_convolution

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2022 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
QuantizedDepthwiseConv2D layer definition.
"""

__all__ = ["QuantizedDepthwiseConv2D", "DepthwiseConv2DTranspose",
           "QuantizedDepthwiseConv2DTranspose"]


import tensorflow as tf
import keras

from keras import backend
from keras.layers import DepthwiseConv2D

from .layers_base import (register_quantize_target, rescale_outputs, tensor_inputs,
                          neural_layer_init, register_aligned_inputs, check_arg_constraints,
                          QuantizedLayer)
from .convolution import deconv_output_length
from ..tensors import FixedPoint, QFloat


[docs] @register_quantize_target(DepthwiseConv2D, has_weights=True) @register_aligned_inputs @keras.saving.register_keras_serializable() class QuantizedDepthwiseConv2D(QuantizedLayer, DepthwiseConv2D): """ A depthwise convolutional layer that operates on quantized inputs and weights. Args: quant_config (dict, optional): the serialized quantization configuration. Defaults to None. """ @neural_layer_init(False) def __init__(self, *args, quant_config=None, **kwargs): # Override WeightQuantizer axis to -2 which corresponds to the channel dimension of the # depthwise operation. self.weight_quantizer.axis = -2 self.quant_config['weight_quantizer']['axis'] = -2 # Limit buffer bitwidth to 27 self.quant_config['buffer_bitwidth'] = min(28, self.quant_config['buffer_bitwidth']) self.buffer_bitwidth = self.quant_config['buffer_bitwidth'] - 1 @tensor_inputs([FixedPoint, tf.Tensor]) @rescale_outputs def call(self, inputs): # Quantize the weights depthwise_kernel = self.weight_quantizer(self.depthwise_kernel) outputs = backend.depthwise_conv2d( inputs, depthwise_kernel, strides=self.strides, padding=self.padding, dilation_rate=self.dilation_rate, data_format=self.data_format) if self.use_bias: # Quantize bias and align it on the outputs bias = self.bias_quantizer(self.bias, outputs) outputs = tf.add(outputs, bias) return outputs
[docs] @keras.saving.register_keras_serializable() class DepthwiseConv2DTranspose(DepthwiseConv2D): """ A transposed depthwise convolutional layer. It performs a transposed depthwise convolution on inputs. """ arg_constraints = { 'dilation_rate': lambda: [1, [1, 1], (1, 1)], 'depth_multiplier': 1, 'strides': lambda: [2, [2, 2], (2, 2)], 'padding': 'same' } def __init__(self, *args, **kwargs): check_arg_constraints(self, kwargs) super().__init__(*args, **kwargs) def build(self, input_shape): # Ensure variables are build with the appropriate name with tf.name_scope(self.name + '/'): super().build(input_shape) def call(self, inputs): # Infer the dynamic output shape inputs_shape = tf.shape(inputs) out_height = deconv_output_length( inputs_shape[1], self.kernel_size[0], padding=self.padding, stride=self.strides[0], dilation=self.dilation_rate[0]) out_width = deconv_output_length( inputs_shape[2], self.kernel_size[1], padding=self.padding, stride=self.strides[1], dilation=self.dilation_rate[1]) output_shape = tf.stack((inputs_shape[0], out_height, out_width, 1)) # Duplicate output_shape to create a placeholder that could be iterated in # tf.vectorized_map, making keras happy. output_shape = tf.repeat([output_shape], repeats=inputs_shape[-1], axis=0) # Inputs and kernels must be transposed to have their channel # dimension first because the tf.vectorized_map call that follows will # unpack them on dimension 0. The channel dimension is virtually # restored using expand_dims so that elements have the appropriate # shape for the conv2d_transpose call (with a channel dimension of 1 # which is expected in the depthwise process). inputs_channel_first = tf.transpose(inputs, (3, 0, 1, 2)) inputs_channel_first = tf.expand_dims(inputs_channel_first, -1) kernel_channel_first = tf.transpose( self.depthwise_kernel, (2, 0, 1, 3)) kernel_channel_first = tf.expand_dims(kernel_channel_first, -2) dw_outputs = tf.vectorized_map( lambda x: backend.conv2d_transpose(x[0], x[1], output_shape=x[2], strides=self.strides, padding=self.padding), (inputs_channel_first, kernel_channel_first, output_shape)) outputs = tf.transpose(tf.squeeze(dw_outputs, axis=-1), (1, 2, 3, 0)) # Last dimension is lost when building layer outputs in model. outputs = tf.reshape(outputs, (inputs_shape[0], out_height, out_width, inputs_shape[-1])) if self.use_bias: outputs = tf.add(outputs, self.bias) return outputs
[docs] @register_quantize_target(DepthwiseConv2DTranspose, has_weights=True) @register_aligned_inputs @keras.saving.register_keras_serializable() class QuantizedDepthwiseConv2DTranspose(QuantizedLayer, DepthwiseConv2DTranspose): """ A transposed depthwise convolutional layer that operates on quantized inputs and weights. Args: quant_config (dict, optional): the serialized quantization configuration. Defaults to None. """ @neural_layer_init(separable=False) def __init__(self, *args, quant_config=None, **kwargs): # By default neural_layer_init quantizer will be set to -1 (per-axis), but # in this very layer it will need to be set per-tensor to complete # the conv2d transpose operation. Weight quantizer axis is overridden, # and quant_config is updated accordingly. self.weight_quantizer.axis = None self.quant_config['weight_quantizer']['axis'] = None # Limit buffer bitwidth to 27 self.quant_config['buffer_bitwidth'] = min(28, self.quant_config['buffer_bitwidth']) self.buffer_bitwidth = self.quant_config['buffer_bitwidth'] - 1 @tensor_inputs([FixedPoint]) @rescale_outputs def call(self, inputs): # Infer the dynamic output shape inputs_shape = tf.shape(inputs) out_height = deconv_output_length( inputs_shape[1], self.kernel_size[0], padding=self.padding, stride=self.strides[0], dilation=self.dilation_rate[0]) out_width = deconv_output_length( inputs_shape[2], self.kernel_size[1], padding=self.padding, stride=self.strides[1], dilation=self.dilation_rate[1]) output_shape = tf.stack((inputs_shape[0], out_height, out_width, 1)) # Duplicate output_shape to create a placeholder that could be iterated in # tf.vectorized_map, making keras happy. output_shape = tf.repeat([output_shape], repeats=inputs_shape[-1], axis=0) # Quantize the depthwise kernels depthwise_kernel = self.weight_quantizer(self.depthwise_kernel) # Inputs and kernels must be transposed to have their channel # dimension first because the tf.vectorized_map call that follows will # unpack them on dimension 0. The channel dimension is virtually # restored using expand_dims so that elements have the appropriate # shape for the conv2d_transpose call (with a channel dimension of 1 # which is expected in the depthwise process). inputs_channel_first = tf.transpose(inputs, (3, 0, 1, 2)) inputs_channel_first = tf.expand_dims(inputs_channel_first, -1) kernel_channel_first = tf.transpose(depthwise_kernel, (2, 0, 1, 3)) kernel_channel_first = tf.expand_dims(kernel_channel_first, -2) # Perform the depthwise operation on values using conv2d_transpose on # each channel dw_values = tf.vectorized_map( lambda x: backend.conv2d_transpose(x[0], x[1], output_shape=x[2], strides=self.strides, padding=self.padding), (inputs_channel_first.values, kernel_channel_first.values, output_shape)) dw_values = tf.transpose(tf.squeeze(dw_values, axis=-1), (1, 2, 3, 0)) # Last dimension is lost when building layer outputs in model. dw_values = tf.reshape(dw_values, (inputs_shape[0], out_height, out_width, inputs_shape[-1])) # Build a new FixedPoint outputs = FixedPoint(dw_values, inputs.value_bits, inputs.frac_bits) # Build a new QFloat outputs = QFloat(outputs, kernel_channel_first.scales) if self.use_bias: # Quantize biases and align them on the outputs bias = self.bias_quantizer(self.bias, outputs) # Add biases outputs = tf.add(outputs, bias) return outputs